CSE 564
VISUALIZATION \& VISUAL ANALYTICS

VA SYSTEM DESIGN AND EVALUATION

Klaus Mueller

Computer Science Department Stony Brook University

Lecture	Topic	
$\mathbf{1}$	Intro, schedule, and logistics	
$\mathbf{2}$	Applications of visual analytics, basic tasks, data types	
$\mathbf{3}$	Introduction to D3, basic vis techniques for non-spatial data	
$\mathbf{4}$	Data assimilation and preparation	Project \#1 out
$\mathbf{5}$	Data assimilation and preparation	
$\mathbf{6}$	Bias in visualization	Project \#2(a) out
$\mathbf{7}$	Data reduction and dimension reduction	
$\mathbf{8}$	Visual perception	
$\mathbf{9}$	Visual cognition	Project \#2(b) out
$\mathbf{1 0}$	Visual design and aesthetics	
$\mathbf{1 1}$	Cluster analysis: numerical data	
$\mathbf{1 2}$	Cluster analysis: categorical data	
$\mathbf{1 3}$	High-dimensional data visualization	
$\mathbf{1 4}$	Dimensionality reduction and embedding methods	
$\mathbf{1 5}$	Principles of interaction	Final project proposal call out
$\mathbf{1 6}$	Midterm \#1	
$\mathbf{1 7}$	Visual analytics	Final project proposal due
$\mathbf{1 8}$	The visual sense making process	
$\mathbf{1 9}$	Maps	Project 3 out
$\mathbf{2 0}$	Visualization of hierarchies	Final Project preliminary report due
$\mathbf{2 1}$	Visualization of time-varying and time-series data	
$\mathbf{2 2}$	Foundations of scientific and medical visualization	
$\mathbf{2 3}$	Volume rendering	
$\mathbf{2 4}$	Scientific and medical visualization	
$\mathbf{2 5}$	Visual analytics system design and evaluation	
$\mathbf{2 6}$	Memorable visualization and embellishments	
$\mathbf{2 7}$	Infographics design	
$\mathbf{2 8}$	Midterm \#2	

OUTLINE

This lecture is about the human factor

- data science and analytics with the human in the loop
- design systems with the human in the loop
- evaluate systems with the human in the loop

PROLOGUE

Overall definition of visual analytics

- What are the fundamental tasks of data science?
- How can humans assist in these?
- How can humans benefit from these?

FUNDAMENTAL TASKS IN Visual Data Science

TASK \#1: CLASSIFICATION

Predict which class a member of a certain population belongs to

- absolute
- probabilistic

Require a classification model

- absolute
- probabilistic (likelihood)

Scoring with a model

- each population member gets a score for a particular class/category
- sort each class or member scores to assign
- scoring and classification are related

CLASSIFICATION: THE HUMAN FACTOR

Supervised learning

- human labels the samples
- find a good feature vector
- build the classification model

CLASSIFICATION: THE HUMAN FACTOR

Active supervised learning

- human labels the samples
- but while samples are often abundant, labeling can be expensive
- active learning \rightarrow only label the samples critical to the model

(a)
(a) Assume a toy data set of 400 instances, evenly sampled from two class Gaussians, visualized in 2D feature space.
(b) Learn a logistic regression model by training it with 30 labeled instances randomly drawn from the problem domain (70\% accuracy)
(c) Learn a logistic regression model by training it with 30 actively queried instances using uncertainty sampling (90\%)

APPLICATION: VISUAL MODEL LEARNING

Simple example: network traffic analysis

- the (very large) data set consists of a 1-hour snapshot of internet packets
- goal is to learn the concept 'webpage load'

Mark good examples

VISUAL MODEL LEARNING: SET INITIAL RULE

Use Inductive Logic Programming (Prolog) to formulate initial model (rule):

```
webpage_load(X) :-
    same_src_ips(X),same_dest_ips(X),same_src_port(X, 80)
```


VISUAL MODEL LEARNING: VERIFY INITIAL RULE

Now we classify other data points with this rule and visualize

Mark negative examples

VISUAL MODEL LEARNING: REFINE INITIAL RULE

Marking negative examples yields updated/refined rule:

```
webpage_load(X) :-
```

same_src_ips(X),same_dest_ips(X),same_src_port(X,80),
timeframe_upper (X, 10), length (X,L), greaterthan (L, 8).
here: must contain at least 8 packets and be within a time frame of 10

TASK \#2: REGRESSION

Regression = value estimation

Fit the data to a function

- often linear, but does not have to be
- quality of fit is decisive

Regression vs. classification

- classification predicts that something will happen
- regression predicts how much of it will happen

Human factor:

- identify possible outliers

ANSCOMBE QUARTET

Visualization of statistics results is important

I		II		III		IV	
x	y	x	y	x	y	x	y
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74	13	12.74	8	7.71
9	8.81	9	8.77	9	7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.10	14	8.84	8	7.04
6	7.24	6	6.13	6	6.08	8	5.25
4	4.26	4	3.10	4	5.39	19	12.5
12	10.84	12	9.13	12	8.15	8	5.56
7	4.82	7	7.26	7	6.42	8	7.91
5	5.68	5	4.74	5	5.73	8	6.89

Property	Value
Mean of x in each case	9 (exact)
Sample variance of x in each case	11 (exact)
Mean of y in each case	7.50 (to 2 decimal places)
Sample variance of y in each case	4.122 or 4.127 (to 3 decimal places)
Correlation between x and y in each case	0.816 (to 3 decimal places)
Linear regression line in each case	$y=3.00+0.500 x$ (to 2 and 3 decimal places, respectively)

Same statistics Very different data

TASK \#3: SIMILARITY MATCHING

Identify similar individuals based on data known about them

- need a measure of similarity
- features that define similarity
- characteristics

Similarity often part of

- classification
- regression
- clustering

Human factor

- similar to supervised learning
- identify effective features

TASK \#4: CLUSTERING

Group individuals in a population together by their similarity

- preliminary domain exploration to see which natural groups exist

- this includes outlier detection
- outliers are the data that do not cluster
- human factor: labeling, verification, correction

TASK \#5: CO-OcCURRENCE GROUPING

Find associations between entities

Difference to clustering

- in clustering similarity is based on the object's attributes
- in co-occurrence similarity is based on objects appearing together

Human factor:

- labeling
- verification
- correction

TASK \#6: PROFILING

Also known as behavior description

- attempts to characterize the typical behavior of an individual, group, or population

Often used to establish behavioral norms for anomaly detection

- fraud detection
- intrusion detection

Examples:

- credit card fraud
- airport security

Human factor:

- labeling, verification, correction

TASK \#7: LINK PREDICTION

Predict connections between data items

- usually works within a graph
- predict missing links
- estimate link strength

Time T+1

Applications

Time T

- in recommendation systems
- friend suggestion in Facebook (social graph)
- link suggestion in Linkedln (professional graph)
- movie suggestion in Netflix (bipartite graph people - movies)

Human factor:

- labeling
- verification
- correction

TASK \#8: DATA REDUCTION

Take a large dataset and substitute it with a smaller one

- keep loss of information minimal
- clustering and cleaning
- importance sampling
- dimension reduction
- data abstraction
- big data \rightarrow small data
- find latent variables

Example for latent variable - Movie Taste

- not directly measurable - latent variable
- derive from movie viewing preferences
- can reveal genre, etc.

Human factor:

- labeling
- verification
- correction

TASK \#9: CAUSAL MODELING

Understand what events or actions influence others

Different from predictive modeling

- tries to explain why the predictive model worked (or not)

Potentially unreliable when done from observational data

- conducting a targeted experiment is better, but often impossible
- have to work with observational (often anecdotal data)
- hence there is a clear human factor: verify the model, correct it, edit it

Builds on counterfactual analysis

- an event is causal if mutating it will lead to undoing the outcome
- "If only I hadn't been speeding, my car wouldn't have been wrecked"
- downward vs. upward counterfactual thinking
- can explain happiness of bronze medalists vs. silver medalists
- just making the grade vs. just missing the grade

Case Study: What Causes Low MPG

The Car Data Set

Consider the salient features of a car (not really big data):

- miles per gallon (MPG)
- top speed
- acceleration (time to 60 mph)
- number of cylinders
- horsepower
- weight
- country origin

400 cars from the 1980s

SHOWN IN A SPREADSHEET

Global Layout of The Car Data

Random

Seeking the Cause of Low MPG

Isolating MPG

The Visual Causality Analyst


```
[Gravh Model Iofo.]
[Clicked Vertex Info.]
[cllcked Edge Info.]
```

[Clicked Vertex Info.]
[CLIcked Edge Tnfo.]

How To
 DESIGN A VISUAL ANALYTICS SOLUTION

Use the nested model

- devised by Tamara Munzner (UBC)
- M. Meyer, M. Sedlmair, P. Quinan, T Munzner, "The nested blocks and guidelines model," Information Visualization, 2013

Step 1: Characterize the Problem

Define the tasks, data, workflow of target users

- the tasks are usually described in domain terms
- finding and eliciting the requirements is notoriously hard
- observe how domain users work and perform their tasks
- observe the pains they are having
- what are the limitations?
- what is currently impossible, slow, or tedious?

domain problem characterization

STEP 2: ABSTRACT INTO A DESIGN

Map from domain vocabulary/concerns to abstraction

- may require some sort of transformation
- data and types are described in abstract terms
- numeric tables, relational/network, spatial, ...
- tasks and operations described in abstract terms
- generic activities: sort, filter, correlate, find trends/outliers...

domain problem characterization

data/operation abstraction design

STEP 2: ENCODE INTO A VISUALIZATION

Visual encoding

- how to best show the data (also pay tribute to aesthetics)
- bar/pie/line charts, parallel coordinates, MDS plot, scatterplot, tree map, network, etc.
Interaction design
- how to best support the intent a user may have
- select, navigate, order, brush, ...

domain problem characterization

data/operation abstraction design
encoding/interaction technique design

MATCH VISUALIZATIONS TO TASKS

check out this site

MATCH VISUALIZATIONS TO TASKS

Fig. 3. Pairwise relation between visualization types across tasks and performance metrics. Arrows show that the source is significantly better than the target.

Saket, B. et al. "Task-Based Effectiveness of Basic Visualizations. IEEE TVCG , 2019

STEP 4: DESIGN AN ALGORITHM

Well-studied computer science problem

- create efficient algorithms
- should support human interaction
- else it would not comply with key principle of visual analytics
domain problem characterization
data/operation abstraction design
encoding/interaction technique design algorithm design

ApPLICATION EXAMPLE

Let use the causality analyzer framework just presented

- use the car design example

Domain problem characterization

- how to design a faster car without elevating gas consumption

Data/operation abstraction design

- determine how the different car parameters depend on one another
- collect data of different car models and compute a causal network

Encoding/interaction technique design

- draw graph where parameters are nodes and causal links are edges
- provide interactions that allows users to test causal links and compute a score

Algorithm design

- Partial correlation followed by causal inferencing/conditioning
- Bayesian Information Criterion (BIC) to model Occam's Razor

ANOTHER APPLICATION EXAMPLE

How the iPhone came about

- domain problem characterization
- data/operation abstraction design
- encoding/interaction technique design
- algorithm design

June 29, 2007

GAUGE SUCCESS

threat: wrong problem
validate: observe and interview target users
threat: bad data/operation abstraction
threat: ineffective encoding/interaction technique
validate: justify encoding/interaction design
threat: slow algorithm validate: analyze computational complexity implement system
validate: measure system time/memory
validate: qualitative/quantitative result image analysis
[test on any users, informal usability study]
validate: lab study, measure human time/errors for operation
validate: test on target users, collect anecdotal evidence of utility validate: field study, document human usage of deployed system
validate: observe adoption rates

Gauge Success

Validate along the way and refine

- formative user study

Extend to general user studies of the final design

- summative user study
- laboratory study
- smaller number of subjects but can use 'speak aloud' protocol
- crowd-sourced via internet
- potentially greater number of subjects to yield better statistics but can be superficial

Let's discuss evaluation studies next

Suppose...

- You boss asks you to come up with a visualization that can show 4 variables
- This reminds you of the great times at CSE 564
- You also remember these three visualizations

Which One Will You Implement?

Let's Ask

- Your best friend
- but will he/she be an unbiased judge?
- Ask more people

Testing with Users

- You will need
- implementations
- some users
- a few tasks they can solve
- Ask each user to
- find a certain relationship in the data
- find certain data elements
- and so on
- Measure time and accuracy
- Do this for each of the three visualizations

You Get a Result Like This

Participant	Device 1		Device 2		Device 3	
	Task 1	Task 2	Task 1	Task 2	Task 1	Task 2
1	11	18	15	13	20	14
2	10	14	17	15	11	13
3	10	23	13	20	20	16
4	18	18	11	12	11	10
5	20	21	19	14	19	8
6	14	21	20	11	17	13
7	14	16	15	20	16	12
8	20	21	18	20	14	12
9	14	15	13	17	16	14
10	20	15	18	10	11	16
11	14	20	15	16	10	9
12	20	20	16	16	20	9
$M e a n$	15.4	18.5	15.8	15.3	15.4	12.2
$S D$	4.01	2.94	2.69	3.50	3.92	2.69

You Get a Result Like This

- Which visualization is best $(1,2$, or 3$)$?

Next Some Basics

Standard Deviation

$$
\begin{aligned}
& \sigma=\sqrt{\frac{\sum[\times-\overline{\mathbf{x}}]^{2}}{\mathbf{n}}} \\
& \sigma=\text { standard deviation } \\
& \sum=\text { sum of } \\
& \mathbf{x}=\text { each value in the data set } \\
& \overline{\mathbf{x}}=\text { mean of all values in the data set } \\
& \mathbf{n}=\text { number of value in the data set }
\end{aligned}
$$

Regression

Regression is the attempt to explain the variation in a dependent variable using the variation in independent variables.

Regression is thus an explanation of causation.
If the independent variable(s) sufficiently explain the variation in the dependent variable, the model can be used for prediction.

Simple Linear Regression

The output of a regression is a function that predicts the dependent variable based upon values of the independent variables.

Simple regression fits a straight line to the data.

Simple Linear Regression

The function will make a prediction for each observed data point.
The observation is denoted by y and the prediction is denoted by $\hat{\mathbf{y}}$.

Simple Linear Regression

Observation: y

For each observation, the variation can be described as:

$$
\begin{gathered}
y=\hat{y}+\varepsilon \\
\text { Actual }=\text { Explained }+ \text { Error }
\end{gathered}
$$

Regression

Independent variable (x)
A least squares regression selects the line with the lowest total sum of squared prediction errors.
This value is called the Sum of Squares of Error, or SSE.

Calculating SSR

The Sum of Squares Regression (SSR) is the sum of the squared differences between the prediction for each observation and the population mean.

Regression Formulas

The Total Sum of Squares (SST) is equal to SSR + SSE.

Mathematically,

$$
\begin{aligned}
& \text { SSR }=\Sigma(\hat{y}-\bar{y})^{2} \text { (measure of explained variation) } \\
& \text { SSE }=\Sigma(y-\hat{y})^{2} \text { (measure of unexplained variation) }
\end{aligned}
$$

$$
\text { SST }=\text { SSR }+ \text { SSE }=\Sigma(y-\bar{y})^{2}(\text { measure of total variation in } y)
$$

remaining slides courtesy of Scott MacKenzie (York University) "Human-Computer Interaction: An Empirical Research Perspective"

What is Hypothesis Testing?

- ... the use of statistical procedures to answer research questions
- Typical research question (generic):

Is the time to complete a task less using Method A than using Method B?

- For hypothesis testing, research questions are statements:

There is no difference in the mean time to complete a task using Method A vs. Method B.

- This is the null hypothesis (assumption of "no difference")
- Statistical procedures seek to reject or accept the null hypothesis (details to follow)

Analysis of Variance

- The analysis of variance (ANOVA) is the most widely used statistical test for hypothesis testing in factorial experiments
- Goal \rightarrow determine if an independent variable has a significant effect on a dependent variable
- Remember, an independent variable has at least two levels (test conditions)
- Goal (put another way) \rightarrow determine if the test conditions yield different outcomes on the dependent variable (e.g., one of the test conditions is faster/slower than the other)

Why Analyze the Variance?

- Seems odd that we analyse the variance when the research question is concerned with the overall means:

> Is the time to complete a task less using Method A than using Method B ?

- Let's explain through two simple examples (next slide)

Example \#1

"Significant" implies that in all likelihood the difference observed is due to the test conditions (Method A vs. Method B).

Example \#2

"Not significant" implies that the difference observed is likely due to chance.

Example \#1 - Details

Note: Within-subjects design

Participant	Method	
	A	B
1	5.3	5.7
2	3.6	4.8
3	5.2	5.1
4	3.6	4.5
5	4.6	6.0
6	4.1	6.8
7	4.0	6.0
8	4.8	4.6
9	5.2	5.5
10	5.1	5.6
Mean	4.5	5.5
\longrightarrow SD	0.68	0.72

Note: $S D$ is the square root of the variance

Make Sure to Randomize

- Eliminate any effect than the one you're after
- Randomize the order in which the subjects run method A and B
- else may get learning effects of the overall problem
- method B may turn out better just because users learnt about the problem with method A
- Randomize the data sets or tasks they are asked to use when running method A and B
- one dataset may be easier than the other
- method B may turn out better just because the data or tasks was easier

Reject or Not Reject - That's the Question

Example \#1 - ANOVA ${ }^{1}$

ANOVA Table for Task Completion Time (s)

	DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Power
Subject	9	5.080	. 564				
Method	1	4.232	4.232	9.796	P. 0121	9.796	. 804
Method * Subject	9	3.888	. 432				
			Probability of obtaining the observed data if the null hypothesis is true				

Example \#1 - ANOVA ${ }^{1}$

MS=SS/df MS between/within ANOVA Table for Task Completion Time (s)
 here: $4.232 / 0.432=9.796$ DF Sum of Squares Mean Square F-Value P-Value Lambda Power Subject Method
Method * Subject SS between method groups (difference of average treatment effect across groups)

SS between method groups

SS within method groups (variation of subjects w/r to each treatment mean)

more explanation, see
Probability of obtaining the observed data if the null hypothesis is true

Thresholds for " p "

- . 05
- . 01
- . 005
- . 001
- . 0005
- . 0001
${ }^{1}$ ANOVA table created by StatView (now marketed as $J M P$, a product of SAS; www.sas.com)

How to Report an F-statistic

The mean task completion time for Method A was 4.5 s . This was 20.1% less than the mean of 5.5 s observed for Method B. The difference was statistically significant ($F_{1,9}=9.80, p<.05$).

- Notice in the parentheses
- Uppercase for F
- Lowercase for p
- Italics for F and p
- Space both sides of equal sign
- Space after comma
- Space on both sides of less-than sign
- Degrees of freedom are subscript, plain, smaller font
- Three significant figures for F statistic
- No zero before the decimal point in the p statistic (except in Europe)

Example \#2 - Details

Example \#2 - ANOVA

ANOVA Table for Task Completion Time (s)

> | Reported as... | |
| :--- | :--- |
| $F_{1,9}=0.626, \mathrm{~ns}$ | $\begin{array}{c}\text { effects, use "ns" if } F<1.0, \\ \text { or " } p>.05 \text { " if } F>1.0 .\end{array}$ |

Note: For non-significant

Example \#2 - Reporting

The mean task completion times were 4.5 s for Method A and 5.5 s for Method B. As there was substantial variation in the observations across participants, the difference was not statistically significant as revealed in an analysis of variance ($F_{1,9}=0.626, \mathrm{~ns}$).

More Than Two Test Conditions

Participant	Test Condition			
	A	B	C	D
1	11	11	21	16
2	18	11	22	15
3	17	10	18	13
4	19	15	21	20
5	13	17	23	10
6	10	15	15	20
7	14	14	15	13
8	13	14	19	18
9	19	18	16	12
10	10	17	21	18
11	10	19	22	13
12	16	14	18	20
13	10	20	17	19
14	10	13	21	18
15	20	17	14	18
16	18	17	17	14
Mean	14.25	15.13	18.75	16.06
$S D$	3.84	2.94	2.89	3.23

ANOVA

ANOVA Table for Dependent Variable (units)

	DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Power
Subject	15	81.109	5.407				
Test Condition	3	182.172	60.724	4.954	. 0047	14.862	. 896
Test Condition * Subject	45	551.578	12.257				

- There was a significant effect of Test Condition on the dependent variable ($F_{3,45}=4.95, p<.005$)
- Degrees of freedom
- If n is the number of test conditions and m is the number of participants, the degrees of freedom are...
- Effect $\rightarrow(n-1)$
- Residual $\rightarrow(n-1)(m-1)$
- Note: single-factor, within-subjects design

Post Hoc Comparisons Tests

- A significant F-test means that at least one of the test conditions differed significantly from one other test condition
- Does not indicate which test conditions differed significantly from one another
- To determine which pairs differ significantly, a post hoc comparisons tests is used
- Examples:
- Fisher PLSD, Bonferroni/Dunn, Dunnett, Tukey/Kramer, Games/Howell, Student-Newman-Keuls, orthogonal contrasts, Scheffé
- Scheffé test on next slide

Scheffé Post Hoc Comparisons

Scheffe for Dependent Effect: Test Condition Significance Level: 5 \%			
	Mean Diff.	Crit. Diff.	P-Value
A, B	-. 875	3.302	.9003
A, C	-4.500	3.302	. 0032
A, D	-1.813	3.302	. 4822
B, C	-3.625	3.302	. 0256
B, D	-. 938	3.302	. 8806
C, D	2.688	3.302	. 1520

- Test conditions A:C and B:C differ significantly (see chart three slides back)

Between-subjects Designs

- Research question:
- Do left-handed users and right-handed users differ in the time to complete an interaction task?
- The independent variable (handedness) must be assigned between-subjects
- Example data set \rightarrow

Participant	Task Completion Time (s)	Handedness
1	23	L
2	19	L
3	22	L
4	21	L
5	23	L
6	20	L
7	25	L
8	23	L
9	17	R
10	19	R
11	16	R
12	21	R
13	23	R
14	20	R
15	22	R
16	21	R
$M e a n$	20.9	
$S D$	2.38	

Summary Data and Chart

Handedness	Task Completion Time (s)	
	Mean	SD
Left	22.0	1.93
Right	19.9	2.42

ANOVA

ANOVA Table for Task Completion Time (s)

	DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Pow er
Handedness	1	18.063	18.063	3.781	0722	3.781	429
Residual	14	66.875	4.777				

- The difference was not statistically significant $\left(F_{1,14}=\right.$ 3.78, $p>.05$)
- Degrees of freedom:
- Effect $\rightarrow(n-1)$
- Residual $\rightarrow(m-n)$
- Note: single-factor, between-subjects design

Two-way ANOVA

- An experiment with two independent variables is a twoway design
- ANOVA tests for
- Two main effects + one interaction effect
- Example
- Independent variables
- Device \rightarrow D1, D2, D3 (e.g., mouse, stylus, touchpad)
- Task \rightarrow T1, T2 (e.g., point-select, drag-select)
- Dependent variable
- Task completion time (or something, this isn't important here)
- Both IVs assigned within-subjects
- Participants: 12
- Data set (next slide)

Data Set

Participant	Device 1		Device 2		Device 3	
	Task 1	Task 2	Task 1	Task 2	Task 1	Task 2
1	11	18	15	13	20	14
2	10	14	17	15	11	13
3	10	23	13	20	20	16
4	18	18	11	12	11	10
5	20	21	19	14	19	8
6	14	21	20	11	17	13
7	14	16	15	20	16	12
8	20	21	18	20	14	12
9	14	15	13	17	16	14
10	20	15	18	10	11	16
11	14	20	15	16	10	9
12	20	20	16	16	20	9
$M e a n$	15.4	18.5	15.8	15.3	15.4	12.2
$S D$	4.01	2.94	2.69	3.50	3.92	2.69

Summary Data and Chart

	Task 1	Task 2	Mean
Device 1	15.4	18.5	17.0
Device 2	15.8	15.3	15.6
Device 3	15.4	12.2	13.8
Mean	15.6	15.3	15.4

ANOVA

	DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Power
Subject	11	134.778	12.253				
Device	2	121.028	60.514	5.865	. 0091	11.731	. 831
Device * Subject	22	226.972	10.317				
Task	1	. 889	. 889	. 076	. 7875	076	. 057
Task * Subject	11	128.111	11.646				
Device *Task	2	121.028	60.514	5.435	. 0121	10.869	. 798
Device * Task * Subject	22	244.972	11.135				

Can you pull the relevant statistics from this chart and craft statements indicating the outcome of the ANOVA?

ANOVA - Reporting

> The grand mean for task completion time was 15.4 seconds. Device 3 was the fastest at 13.8 seconds, while device 1 was the slowest at 17.0 seconds. The main effect of device on task completion time was statistically significant $\left(F_{2,22}=5.865, \mathrm{p}<\right.$.01). The task effect was modest, however. Task completion time was 15.6 seconds for task 1 . Task 2 was slightly faster at 15.3 seconds; however, the difference was not statistically significant ($F_{1,11}=0.076$, ns). The results by device and task are shown in Figure x. There was a significant Device \times Task interaction effect ($F_{2,22}=5.435, p<.05$), which was due solely to the difference between device 1 task 2 and device 3 task 2, as determined by a Scheffé post hoc analysis.

Chi-square Test (Nominal Data)

- A chi-square test is used to investigate relationships
- Relationships between categorical, or nominal-scale, variables representing attributes of people, interaction techniques, systems, etc.
- Data organized in a contingency table - cross tabulation containing counts (frequency data) for number of observations in each category
- A chi-square test compares the observed values against expected values
- Expected values assume "no difference"
- Research question:
- Do males and females differ in their method of scrolling on desktop systems? (next slide)

Chi-square - Example \#1

Observed Number of Users				
Gender	Scrolling Method			Total
	MW	CD	KB	
Male	28	15	13	56
Female	21	9	15	45
Total	49	24	28	101

$\mathrm{MW}=$ mouse wheel
$\mathrm{CD}=$ clicking, dragging
$\mathrm{KB}=$ keyboard

Gender

Chi-square - Example \#1

56.0•49.0/101=27.2

Expected Number of Users				
Gender	Scrolling Method		Total	
	MWW	CD		
Male	27.2	13.3	15.5	56.0
Female	24.0	10.7	12.5	45.0
Total	49.0	24.0	28.0	101

(Expected-Observed)²/Expected=(28-27.2)²/27.2

Significant if it exceeds critical value (next slide)

Chi Squares				
Gender	Scrolling Method		Total	
	MWV	CD		
Male	0.025	0.215	0.411	0.651
Female	0.032	0.268	0.511	0.811
Total	0.057	0.483	0.922	$\mathbf{1 . 4 6 2}$

$$
\chi^{2}=1.462
$$

(See HCI:ERP for calculations)

Chi-square Critical Values

- Decide in advance on alpha (typically .05)
- Degrees of freedom
$-d f=(r-1)(c-1)=(2-1)(3-1)=2$
$-r=$ number of rows, $c=$ number of columns

Significance	Degrees of Freedom								
Threshold (a)	1	2	3	4	5	6	7	8	
.1	2.71	4.61	6.25	7.78	9.24	10.65	12.02	13.36	
.05	3.84	5.99	7.82	9.49	11.07	12.59	14.07	15.51	
.01	6.64	9.21	11.35	13.28	15.09	16.81	18.48	20.09	
.001	10.83	13.82	16.27	18.47	20.52	22.46	24.32	26.13	

$$
\chi^{2}=1.462(<5.99 \therefore \text { not significant })
$$

